Our online buy steroids store specializes in delivering steroids across the US.
Tips & News Archives - Page 3 of 11 - Vaonis
Our online buy steroids store specializes in delivering steroids across the US.

Tips & News

venus
Press, Tips & News, Travel journal

Parker Solar Probe Images Venus on Flyby

NASA’s Parker Solar Probe images the surface of Venus during a recent flyby.

Venus photographed by Parker Solar Probe

Venus, imaged by Parker’s WISPR instrument. NASA/GSFC

You’ve never seen Venus like this. NASA’s Parker Solar Probe accomplished a first during a recent flyby past the planet Venus, imaging the blistering nighttime surface of the planet from space.

The first image pass occurred during the mission’s third flyby in July 2020, followed by a fourth pass on February 20th 2021 at a distance of just under 2,400 kilometers from the Venusian cloudtops. The images are courtesy of Parker’s Wide-Field Imager (WISPR), which can image in the visible light into the near-infrared. The flybys were part of seven planned gravitational assists past Venus, on Parker’s trek into the inner solar system to study the Sun.

Launched on August 12th, 2018 from Cape Canaveral atop a Delta IV Heavy rocket, Parker Solar Probe is designed primarily to study the Sun close up. To this end, the mission will make several looping perihelion passes, getting as close as 6.9 million kilometers (just under 10 solar radii) from the Sun and moving at over 690,000 kilometers per hour by 2025. (Read more about Parker Solar Probe here.)

Though the mission is designed for solar astronomy, the Parker Solar Probe is also giving us some unique perspectives of enigmatic Venus during each pass. The images from WISPR show diverse surface features, including plains, rugged terrain and plateaus. A luminescent halo due to the tenuous presence of oxygen can even be seen in the video.

Venus seen from Parker Solar Probe

Venus seen from WISPR during the February 2021 flyby. NASA/GSFC.

“We’re thrilled with the science insights Parker Solar Probe has provided thus far,” says Nicola Fox (NASA Headquarters-Heliophysics Division) in a recent press release. “Parker continues to outperform our expectations, and we are excited that these novel observations taken during our gravity assist maneuver can help advance Venus research in unexpected ways.”

Remember, though, we’re seeing a nighttime view of the surface though a thick blanket of clouds: that surface is glowing in the infrared because its extremely hot, in the range of 460 Celsius. The extreme heat and pressure on the surface of Venus (90 times that of sea level here on Earth) assured that Venera missions sent to the planet by the Soviet Union in the 1970s only lasted a scant few hours before succumbing to the harsh environment.

Why Imaging Venus is Hard

It’s a cosmic irony that the brightest and closest planet in the skies of Earth is also perpetually shrouded in clouds, and presents a blank white disk. We’ve only just begun to pull back the veil on mysterious Venus with the advent of the Space Age, to reveal a hellscape of a world. The persistent glow captured by Parker may even explain a curious phenomena on Venus reported by observers over the centuries, known as ‘ashen light.’ This is a faint glow perceived across the planet’s night side. On the Moon, Ashen light is easy to explain, as sunlight reflected off the Earth… Venus, however, has no convenient nearby reflector in space.

What’s Next for Parker

Though WISPR was designed to study the solar wind, its also proving its worth looking at Venus as well. The initial plans were to study the Venusian cloud flow patterns, but it actually saw all the way down to the surface of the planet, which surprised researchers.

The Electromagnetic Fields Investigation (FIELDS) instrument also used radio wave detections to characterize how the planet’s atmosphere interacts with the 11-year solar cycle, and WISPR also caught sight of the tenuous dust ring surrounding Venus in its orbit.

Next, Parker will make six more perihelion passes near the Sun in 2022 and early 2023, followed by the penultimate pass 3,939 kilometers from Venus on August 21st, 2023.

Parker is a great example of how versatile missions can produce unexpected science results.

ATLAS
Press, Tips & News, Travel journal

ATLAS Asteroid Hunting Network Now Fully Operational

ATLAS, a vital sentinel in the search for near Earth asteroids is now fully operational.

ATLAS

From right to left: an artist’s conception of NEO Surveyor (Credit: NASA). DART at Didymos (Credit: NASA/Johns Hopkins). ATLAS-El Sauce observatory in Chile (Credit: University of Hawai’i). ATLAS-Sutherland observatory in South Africa (Credit: Willie Koorts (SAAO).

It’s one of the most vital endeavors in modern astronomy. NASA recently announced that the Asteroid Terrestrial-impact Last Alert System (ATLAS) now is, with the addition of two separate southern hemisphere sites—complete. Operated by the University of Hawai’i Institute for Astronomy on behalf of the agency’s Planetary Defense Coordination Office (PDCO) the addition of two new sites, one in Chile and another in South Africa, now includes four telescopes overall, in addition to the two northern hemisphere telescopes based and Maunaloa and Haleakala in Hawai’i, now affords all-sky coverage of both hemispheres of the sky every night, looking for near Earth asteroids.

“An important part of planetary defense is finding asteroids before they find us, so if necessary, we can get them before they get us,” says Kelly Fast (NASA/PDCO) in a recent press release. “With the addition of these two telescopes, ATLAS is now capable of searching the entire sky every 24 hours, making it an important asset for NASA’s continous effort to find, track and monitor NEOs.”

The first two telescopes were developed under a 2013 grant from NASA’s Near-Earth Objects Objects Observations Program, and came online in 2017. The two new telescopes are located at the El Sauce Observatory in the Rio Hurtado Valley in Chile, and the Sutherland Observatory in South Africa, respectively. Each site features a 0.5 meter telescope, capable of scanning a 5-degree wide swath of the sky 100 times the size of the Full Moon. Since 2017, ATLAS has discovered over 700 near-Earth Asteroids (NEAs) and 66 comets and counting, many of which later put on a fine celestial show.

The system has already demonstrated the viability of the “Last Alert” part of its name: two small asteroids –2018 LA and 2019 MO—were detected just hours before impact. The ATLAS-Sutherland observatory has already made its very first solo detection: asteroid 2022 BK, a 100-meter asteroid that passed 5.6 million miles from the Earth on January 28th, 2022.

Tracking near-Earth asteroids is especially tricky for large professional telescopes, as they’re relatively fast movers against the starry background. With a wide field of view and an agile response time, the ATLAS system excels in nabbing new objects that come within the sphere of the Earth-Moon system, about a quarter of a million miles distant.

Worldwide coverage is critical: until ATLAS came online, we were often only hearing about close asteroid passes near Earth after they occurred. Chelyabinsk was also a wake-up call, as a 20-metre asteroid exploded over the Russian city of 1.1 million the morning after Valentine’s Day 2013. This particular space rock snuck in at Earth undetected from a sunward direction.

Another mission may soon take this vigilance against low-flying rocks into space. NASA’s Near-Earth Object Surveyor mission (NEO Surveyor) recently received the green-light to move ahead into Preliminary Design/Key Decision Point-B. This mission would launch in 2026, and use a 50-centimeter mirror to hunt for NEOs in the infrared from its Sun-Earth Lagrange Point 1 (L1) vantage point.

But we’re not waiting for the hazardous asteroids to come to us. NASA’s DART (Double Asteroid Re-Direction Test) launched in November 2021 headed to impact asteroid 65803 Didymos’ moon Dimorphos in late September/early October of this year. OSIRIS-Rex is bringing samples back from 101955 Bennu on September 24th, 2023, an asteroid that could, centuries from now, possibly hit the Earth. And launching along with nine other smallsat missions on SLS Artemis-1 this April is NEA Scout, a small solar sail mission aiming to intercept the 15-metre asteroid 2020 GE in 2024.

We can never know too much about hazardous asteroids and our local solar neighborhood. Expect to see a lot more comets named ‘ATLAS’ very soon.

Press, Tips & News, Travel journal

Top Astronomy Events for February 2022

February sees a bashful sky scene, with the planets huddled near the Sun.

NSP

Dusk at the Nebraska Star Party. Credit: Dave Dickinson

The month of February is thankfully a short one for the denizens of the northern hemisphere. The shortest month of the year and the last full month of astronomical winter up north, February is also the only month that cannot contain two Moons of like phase (i.e., two Full Moons, two New Moons etc. You see this in action in 2022 (more to come on that!)Read more

Press, Tips & News, Travel journal

Tracing “Meteor Smoke” With SOFIE

A recent NASA mission may have solved the mystery of  ‘meteor smoke’ as the source of a key element.

Noctilucent Clouds

High altitude noctilucent clouds, seen from the ISS. Credit: NASA

Watch the night sky long enough, and you’re bound to see one. On any given evening, it’s a common sight to see a meteor slide silently by. These are from ancient streams of dust particles orbiting the Sun, laid down by comets and asteroids. The Earth plows through these streams daily, carving out a 12,750- kilometer wide tunnel in its path around the Sun.

When these cosmic dust motes burn up, they dissipate in the Earth’s atmosphere. This ‘meteor smoke’ has been, until recently, tough to study: most of it lingers high in the tenuous atmosphere, gently mixing with lower layers over time. Balloon and sub-orbital rocket-based detectors have only hinted at its existence.

Over the past decade, however, a mission has been able to carry out a first survey of this little known layer. NASA’s Solar Occultation for Ice Experiment (SOFIE) launched on NASA’s Aeronomy of Ice in the Mesosphere (AIM) Earth observation mission in 2007. From its vantage point in low Earth orbit, SOFIE looks at the thin twilight region just along the limb of the Earth, illuminated by the Sun. This allows it to see tiny suspended aerosol particles held aloft high in the atmosphere.

This also allows SOFIE to obtain the spectrum of elusive meteor smoke, seeing key elements such as magnesium, iron, silicon and oxygen. The Earth scoops up from 2 to 200 tons of space dust and material each day. Data from SOFIE could help scientists not only refine this number, but work towards understanding its composition.

“This was tremendous progress even though we had a range of possible answers,” says Mark Hervig (GATS Inc.) in a recent press release. “There are questions and mysteries in our atmosphere that meteoric smoke may play a role in… it’s really frontier stuff.”

Luckily, scientists have another comparative source: meteor dust collected in the high and dry plains of Antarctica by a recent expedition out of the University of Leeds in the United Kingdom. Material collected on this survey turned out to be made up of the mineral olivine, and contained the same ratio of magnesium, silicon and oxygen seen in SOFIE observations.

The Impact of Meteor Smoke

These two key measurements allowed scientists to revise the amount of material entering the Earth’s atmosphere daily down to about 25 tons per day, on the lower end of the scale. But there’s lots of other roles that meteor smoke may play in the environment.

One is the formation of high altitude noctilucent or iridescent clouds. These are seen shining high in the sky at high latitudes at dusk, and their displays increase during the summertime. Water molecules and ice are the suspected source for noctilucent clouds, and these need a tiny particle to cling to and nucleate around. One possible source (along with rocket exhaust from launches) is meteor smoke. The occurrence of noctilucent clouds seems to be increasing over the past century, perhaps due to the increasing amount of moisture in the atmosphere resulting from climate change.

(Meteor) Smoke on the Water

Meteor smoke may even play a key role in propagating life on Earth as well. Specifically, the energy-generating process of photosynthesis requires the element iron to work… but for plankton at sea, iron is often scarce. Some of this key element does blow in as dust and sand off of Earth’s deserts, but recently, scientists have suggested another source for iron fertilization: the steady downward rain of meteor smoke.

This cosmic source may just be providing a key element needed to fuel life on Earth. A fascinating thought to consider, the next time you see a lingering smoke train from a brilliant bolide meteor, piercing the night sky.

Exomoon
Press, Tips & News, Travel journal

Second Potential New Exomoon Discovered

Researchers delving into the Kepler data turn up a good exomoon candidate.

Exomoon

An artist’s conception of a giant exomoon around a remote world. Credit: NASA

When it comes to exoplanet discoveries, ‘exomoons,’ or moons orbiting worlds around stars beyond our solar system are the hot new deal. After all, every planet in our solar system (except Mercury and Venus) has moons, and most have several. It only stands to reason that most Jupiter-sized exoplanets should also possess moons of their own.

But finding the signal in the noise hasn’t been easy. To date, 4,928 exoplanets are known of and counting. Of these, a good portion are known of due to the transiting method of detection, watching as a tell-tale tiny dip in the star’s light occurs as the planet transits or passes in front of its host star from our line of sight. This method, however, has its drawbacks, as it preferentially detects ‘hot-Jupiters,’ or large gas giant worlds in tight orbits.

Finding a moon in an orbit around a transiting exoplanet is even trickier, as researchers need to find an even smaller ‘signal-within-a-signal’ inside an already subtle fluctuation. This signal also needs to be teased out of starspot activity and the intrinsic variability of the host star itself.

“Exomoons are intrinsically smaller than the planets and thus more challenging to find,” Says David Kipping, Columbia University astronomer and researcher on the study. “Further, their signals occur almost simultaneous to the planetary signal, meaning they land on top of each other and are difficult to disentangle.”

The NASA-supported study published in the Journal Nature Astronomy  involved exoplanet researchers from around the world. The team looked at 70 candidates in the Kepler Space Telescope data. Launched in 2009, Kepler stared at a section of sky spanning the constellations Cygnus, Hercules and Lyra along the galactic plane for four years. A failure of a second of four reaction wheels saw Kepler ending its final days in an extended exoplanet hunt along the plane of the ecliptic, using the solar wind pressure as a third ‘reaction wheel’ to stabilize the spacecraft.

The worlds were selected because they passed criterion for either showing minute timing variations in the data, or hinted at direct transit signals of the moons themselves.

“We don’t know for sure, but we but hypothesize that Jupiter-like planets would be one excellent place to look, given the abundance of moons around Jupiter and Saturn and the relatively massive disks of material thought to exist around such planets whilst they form.” says Kipping. “Another interesting place to look is rocky planets resembling Earth. In either case, planets close to the star are best avoided, since the star can essentially rip off moons from such close-in planets.” Of the candidates, only three exhibited smaller signals perhaps indicative of orbiting exomoons. But only one passed final muster upon further scrutiny: Kepler-1708 b.

The first earlier potential exomoon discovery was Kepler-1625 b-i, found in 2017, though this claim has also been disputed in recent years.

“There is really only just one previous candidate to compare to,” says Kipping. “I would describe this is a signal for which there best astrophysical model identified to explain the data in a planet+moon scenario, which is statistically strongly favored over the alternative astrophysical model of a planet alone. Further, we can find no cause for concern of suspicion to reject this model (versus) extensive testing of the other information we have for this target.”

The Strange World of Kepler-1708 b-i

The system where the discovery was made is interesting in its own right. Kepler-1708 is a sun-like F-type main sequence star slightly more massive than our Sun, 1,667 parsecs (~5,500 light-years) distant. Kepler-b is a 4.6 Jupiter mass world in a 737 day orbit, 1.6 AU from its primary. The suspected exomoon Kepler-1708 b-i is a sub-Neptune sized-world in a 4.6 day orbit, 500 million miles (twice the earth-Moon distance) from its primary.

Are exomoons habitable? Kepler-1708 b’s orbit is roughly equal in size to Mars in our own solar system, which hints at the idea that Kepler-1708 b-i might not be a half-bad place, climate-wise. Tantalizing discoveries like Kepler b-i will be prime targets for the recently launched and unfolded James Webb Space Telescope, once it reaches its home at L2 next week and begins its lengthy commissioning phase. JWST is expected to begin science operations in mid-2022.

Kepler 1708

The rough location of Kepler-1708 in Cygnus. Credit: Stelalrium

Finding Kepler-1708 with a backyard telescope is a difficult but not impossible prospect, as the primary star shines at a faint magnitude +16 in the constellation Cygnus. The star Kepler-1708 is not far from +2.9 magnitude Delta Cygni. Another transit sequence for Kepler-1708 b-i will occur in early 2023, and may confirm or deny the exomoon claim.

Expect to see the menagerie of distant worlds grow in coming years as more exoplanet surveys come online, to include the disocovery of more elusive exomoons.

Press, Tips & News, Travel journal

Chinas Chang’e-5 Mission Detects Water on the Moon

China’s intrepid Chang’e-5 lander makes the first in situ detection of water on the surface of the Moon.

Lunar panorama

The panoramic view of the Chang’e-5 landing site. Credit: CNSA/CLEP

The idea that the Moon is bone dry is getting turned on its head. A recent paper out from the China Academy of Sciences in the journal Science Advances notes the detection of the chemical compound hydroxyl (OH) of the surface of the Moon. While the detection of water-related compounds has been noted before either in samples or via remote detection, this finding would mark the first time that the elemental constituents of water have been discovered on the surface via up close prospecting.

The landing platform was part of the Chang’e-5 mission that landed on the slopes of the Mons Rümker volcanic formation in the Oceanus Procellarum region on the lunar nearside on December 1st, 2020. The mission included an all-in-one orbiter, lander, and ascent return vehicle, in a single ambitious mission. Though information on the mission from the Chinese National Space Adminstration (CNSA) has–like most of China’s space missions—trickled out slowly to the western press, the agency did post a small press release on the discovery.

The ratio of hydroxyl versus regolith seen in the analysis is tiny: about 180 parts per million (ppm) in the foreground rock, versus 120 ppm in the surrounding regolith. The measurements were made using the lander’s panoramic camera and lunar mineralogical spectrometer (LMS), which made the discovery.

The Chan’e-5 landing site, showing the water discovery in context. Credit: CNSA/Lin Honglei

“The Chang’e-5 spacecraft landed on one of the youngest mare basalts, located at a mid-high latitude on the Moon, and returned 1,731-grams of samples,” said the team in a recent press release. “Before sampling and returning the lunar soil to Earth, however, the lunar mineralogical spectrometer (LMS) onboard the lander performed spectral reflectance measurements of the regolith and of a rock, thereby providing the unprecedented opportunity to detect lunar surface water.”

The history of water on the Moon goes all the way back to samples returned from the Soviet Luna-24 mission in 1976. India’s Chandrayaan-1 mission and NASA’s Clementine and Lunar Prospector missions caught tantalizing hints of water ice in permanently shadowed lunar polar craters from lunar orbit, thought to have been deposited by ancient comets. Water was also seen in the spectra of the resulting plume generated by the Lunar Crater Observation Sensing Satellite (LCROSS) impactor in 2009 which struck Cabeus crater, and NASA’s flying Stratospheric Observatory For Infrared Astronomy (SOFIA) found more evidence for surface hydroxyls on the Moon. Unlike the polar deposits or subsurface ice seen in the LCROSS impact, surface hydroxyls seen in the Chang’e-5 samples are caused by solar wind implantation, a process where hydrogen atoms bond with oxygen on the lunar surface.

China has been busy on the Moon. CNSA also completed the only lunar farside soft landing with Chang’e-4 on January 3, 2019, touching down at Von Kármán crater. We still occasionally hear from the Yutu-2 rover on the lunar farside, and the tiny rover recently created a viral stir in December 2021, when China released images of what was dubbed by the internet the ‘lunar hut’ on the distant horizon. Upon closer inspection, however, the ‘hut’ turned out to be a much more prosaic, rabbit-shaped rock.

Lunar Hut

No ‘lunar hut’ here… just a rabbit-shaped rock. Credit: CNSA

The in situ discovery of OH/H2O compounds is important in showing that the Moon may be much more chemically interesting than thought. To be sure, actually exploiting a resource that’s in the order of 180 ppm would be difficult; you’d have to go though about five metric tons of regolith to get a single liter of usable hydroxyl. Still, those polar regions on the Moon may have lots more water… and what researchers would really like to do is get down below the lunar surface, and see if deposits due to out-gassing are laying in wait.

A battery of lunar missions are returning to the Moon in a big way in 2022 and beyond. One, dubbed the Polar Resources Ice-Mining Experiment (PRIME-1) equipped with The Regolith Ice Drill for Exploring New Terrain (TRIDENT) will head to the Moon  to address this specific question. PRIME/TRIDENT will be aboard Intuitive Machines’ IM-2 mission, headed to Shackleton Crater near the lunar south pole in late 2022.

Be sure to raise a glass of H2O to the almost Full Moon this weekend, and say congrats to China on the discovery of hydroxyls on the Moon.

Press, Tips & News, Travel journal

Top Astronomy Events for January 2022

Astronomy January 2022 sees the ‘Christmas Comet of 2021’ reach perihelion, while planets line up at dusk.

Stellina

Stellina at dusk. Credit: Dave Dickinson

The month of January may be the first full month of northern hemisphere winter, but there’s always several reasons to brave the cold. Ironically, the coldest nights are often the clearest and most stable, as the frigid winter air radiates heat back into space.

The January Sky

January evenings give us a glimpse of our nearby galactic neighbors in the Orion Spur arm of the Milky Way galaxy. Flashback to January 2020, and all eyes were on the bright star Betelgeuse, as the bright star in the shoulder of Orion underwent a historic dimming. And although 2020 didn’t see the red giant star go supernova, January would be a fine time for the giant star to finally burst, either tonight over thousands of years from now.

In the northern or southern hemisphere, the December 31st sky on New Year’s Eve always has a fine marker to ring in the year: Sirius (Alpha Canis Major), the brightest star in the sky, culminates at midnight. Sirius is actually only 8.7 light-years distant, and at declination -16 degrees 45’, is visible just about worldwide.

Fun fact: Though it’s northern hemisphere winter in January, the Earth is actually at perihelion or its closest point to the Sun in the current epoch early in the first days of the year, as the tilt of the planet is a much larger driver of the seasons.

The Moon in January 2022

The Moon reaches New phase early in January on the 2nd, just 19 hours after perigee on New Year’s Day. Full Moon occurs on January 17th, also known as the Full Wolf Moon. In 2022 the path of the Moon is ‘ecliptic-like’ this year, but expect it to get steeper towards 2025. This is because the 5 degree tilt of the Moon is inclined versus the ecliptic (the outline of the path of the Earth around the Sun), not the tilt of the Earth’s axis. This means that the path of the Moon seems to go from shallow to steep to back again versus the ecliptic in an 18.6 year cycle, known as the Precession of the Line on Apsides.

Looking westward on the first dusk of 2022. Credit: Stellarium

The planetary rundown in January 2022: The naked eye planets are nearly all in the evening sky at the beginning of of 2022; only lonely Mars holds down the fort high to the south at dawn. You’ll have to hurry to see Venus though, as it speeds towards inferior conjunction between the Earth and the Sun shortly after the first week of January, to emerge in the dawn and spend the remainder of 2022 there, ruling the morning sky.

January meteors: This just might be the year to spy the elusive Quadrantid meteors. Named after the now defunct constellation of Quadrans Muralis (the Mural Quadrant), the ‘Quads’ have a very narrow peak, making them very elusive. The good news is, the Moon hits New just a day before the expected peak of the Quads, which arrives on January 3rd at 20:40 Universal Time (UT). The 2022 Quadrantids is expected to hit a Zenithal Hourly Rate (ZHR) of 60-200 meteors per hour.

Comet A1 Leonard at perihelion. Credit: NASA/JPL

Comets: A1 Leonard reaches perihelion on January 3rd 0.62 AU (92.8 million kilometers) from the Sun, exactly one year after discovery. Currently at magnitude +4.5 in the constellation of Piscis Austrinus, Comet A1 Leonard is now well-placed for southern hemisphere observers. On an ~80,000 year orbit inbound, A1 Leonard is destined to head out of the solar system after perihelion for good, as celestial mechanics dispatches the comet out into the Milky Way Galaxy to become someone else’s ‘interstellar object’ millions of years in the future. Comet A1 Leonard is now headed off in general the direction of the +3.5 magnitude star Mu Serpentis, 156 light-years distant.

The celestial path of Comet A1 Leonard over the coming decade, until 2032. Credit: Dave Dickinson/Starry Night.

Deep Sky highlight (northern hemisphere) – One of our favorite open clusters rides high on January evenings. Messier 35 (M35) is an easy find with binoculars, in the foot of the zodiacal constellation of Gemini the twins. Crank up the magnification, and thousands of stars overflow the field in a magnificent view. The cluster is also very near the ecliptic plane, sitting in the celestial position that the Sun occupies during the annual June northward solstice. M35 is 2.8 kilo-light-years distant.

Messier 35 from urban skies. Credit: Dave Dickinson, a Stellina capture of about 90 seconds.

Deep Sky highlight (southern hemisphere) – The Ringed Galaxy NGC 1269: A fine example ring galaxy (and a bit of a historical mix up) sits in the rambling southern constellation of Eridanus the River. 33 million light-years distant, NGC 1269 is nearly face-on from our perspective.

A Hubble/GALEX image of Ring Galaxy NGC 1291. Credit: NASA/Hubble STScI/GALEX.

Shining at magnitude +8.5 and a generous 5’ by 4’ across, NGC 1269 is just two degrees north of the +4.3 magnitude star 82 (e) Eridani, making it an easy find with a moderate- to large- telescope. The galaxy is also sometimes listed as ‘NGC 1291’ due to an early 19th century mix-up: Astronomer John Herschel came across the deep-sky object in an 1836 southern sky survey and dutifully recorded it as NGC 1269—though unbeknownst to Herschel—celestial cartographer John Dunlop had already noted the galaxy as NGC 1291 about a decade prior.

Finding Omicron Eridani. Credit: Stellarium.

Challenge object (northern hemisphere) – The 40 Eridani B Triple System: Have you ever seen a red dwarf? How about a white dwarf? The Omicron Eridani (40 Eridani) triple star in the northern end of the meandering constellation Eridanus offers a unique opportunity to check both off of your observing life list. The +4.4 primary offers a fine guidepost to the system… now, crank up the magnification, and look for a +10th magnitude pair 8” apart, just over an arcminute from the primary. These two are the one each red and white dwarf stars. 40 Eridani is 16 light-years distant.

Finding T Pyxidis. Credit: Stellarium.

Challenge Object (Southern Hemisphere) – Its always worth scanning the vacant southern sky region east of +3.7 magnitude Alpha Pyxidis for an elusive star: T Pyxidis is a member of a rare type of variable star, known as a recurrent nova. Usually, T Pyx is undetectable, below +14th magnitude. On random decades, however, T Pyx will flirt with naked eye visibility. This has occurred in 1902, 1920, 1944, 1966 and finally again in 2011. You’re seeing a main sequence star, dumping material on a white dwarf, which flares occasionally in brilliant fashion. When will T Pyxidis pop again?

Top Astronomy Events for January 2022

2-New Moon

3-Comet 2021 A1 Leonard at perihelion

3-The Quadrantid meteors peak

4-Earth reaches perihelion

7-Mercury reaches greatest eastern elongation (19.2 degrees from the Sun)

9-Venus reaches inferior conjunction (5 degrees from the Sun0

9-1st Quarter Moon

11-Comet 104P/Kowal at perihelion

17-Full Moon

25-Last Quarter Moon

Press, Tips & News, Travel journal

Next Generation Sentry II System to Assess Risk From Possible Hazardous Asteroids

NASA’s new Sentry II system will refine long term collision predictions for Near Earth Asteroids.

Didymos

The convoluted future path of asteroid Didymos through the inner solar system. Credit: NASA/JPL

NASA has a powerful new tool in its arsenal for defending the Earth from hazardous asteroids. Since 2002, the space agency has used the Sentry system to predict the future path of near Earth asteroids (NEAs), and assess their risk for a potential future impact with the Earth. This system, however, has its limitations. As the number of known NEAs nears 28,000 and grows by 3,000 new asteroids per year, a new system is needed to keep up with demand.

The new system named Sentry II will meet this need. Sentry II just went online in December 2021, and will use an enhanced algorithm to look at all of the factors impacting an asteroid’s future trajectory. Astronomers expect to see better, more accurate projections further into the future, using the Sentry II system.

Sentry’s Original Limitations

NASA’s Center for Near Earth Object Studies (CNEOS) based out of the Jet Propulsion Laboratory in Pasadena, California works together with the agency’s Planetary Defense Coordination Office (PDCO) to assess impact probabilities over the next century. The system could run the predictions in under an hour, a vital resource especially in terms of seeing small asteroids inbound, which are often discovered with little advance warning. A good example was the Chelyabinsk impactor which struck Russia the day after Valentine’s Day in 2013. The Chelyabinsk rock came at Earth from a sunward direction, and was undetected prior to impact.

However, the original Sentry system had its drawbacks. Asteroid path predictions are limited by the number of observations made: the more observations, the better we know its future path. Not only does this path become more indefinite over time, but small tugs by other planets in the solar system perturb an asteroid’s path. Sentry accounted for this, but it didn’t factor in the complex effect of thermal heating from the Sun via what’s known as the Yarkovsky effect, which slowly nudges an asteroid over time. Small changes add up, and Sentry II will take these into account.

“The fact that Sentry couldn’t automatically handle the Yarkovsky effect was a limitation,” says Davide Farnocchia (NASA-JPL) in a recent press release. “Every time we came across a special case—like asteroids Apophis, Bennu or 1950 DA—we had to do complex and time-consuming manual analyses. With Sentry II, we don’t have to do that anymore.”

The previous method would often break down—especially in the case of close Earth flybys—requiring manual analysis of the future trajectory of the asteroid. Sentry II eliminates this with a different mathematical approach, allowing it to focus in on low probability impact zones (known as keyholes). These are regions which would made a future impact more likely, were an asteroid to pass through these narrow zones.

Sentry II is vital, as new all-sky surveys such as the Vera C. Rubin telescope come online over the next few years. Expect to see a flood of new discoveries of ever smaller asteroids, necessitating the need for a more powerful prediction model such as Sentry II.

101955 Bennu and 99942 Apophis are good case studies in narrowing down the uncertainty of a future impact. Discovered in 2004, 450 meter Apophis generated a brief amount of excitement when it looked like there was a small chance of impact with Earth on April 13 (yes, Friday the 13th) 2029. Better observations and predictions soon ruled this out, though there was still a small chance of an impact later this century in 2068, though that was also ruled out earlier this year.

Thanks to the OSIRIS-Rex mission, we now know the orbit and characteristics of Bennu better than any other asteroid in the solar system. This 530-metre space rock has a small (1-in-2,700) chance of impacting the Earth on September 24th 2182, if it happens to pass through a gravitational keyhole in 2135.

But NASA isn’t just passively hunting for asteroids. On November 24th, the agency launched the Double Asteroid Redirection Test (DART) mission headed towards double asteroid Didymos, where it will impact the asteroid’s tiny moon Dimorphos in late September-early October 2022. This exercise, coupled with the Sentry II system may prove useful, if we ever did need to move a potentially hazardous asteroid out of harm’s way.

Press, Tips & News, Travel journal

Unique Circumbinary Exoplanet Transits Binary Primary

A unique circumbinary exoplanet system transits both host stars.

Triple Transit

An artist’s conception of the TIC 172900988 b. Credit: NASA

The menagerie of exoplanets just got a little stranger. Add to the fastest, hottest etc… a new find: TIC 172900988 b, a circumbinary world that transits both host primary stars.

Eclipsing binary stars are well known to astronomers: two famous stars, Algol and Beta Lyrae are naked eye variables, dimming and brightening as they happen to pass one in front of another. The same method also works to tease out unseen companions: exoplanets are discovered as a world passes in front of its host star as seen from our line of sight, creating a tiny dip in its brightness.

Circumbinary exoplanets—planets orbiting two stars—have been seen before: the first circumbinary exoplanet discovered was PSR B1620-26 in 2003, and the Kepler Space Telescope found about a dozen of such worlds out of the thousands of exoplanets it discovered. Its successor, the Transiting Exoplanet Survey Satellite (TESS) has found 3,500 exoplanet candidates and more than 150 confirmed worlds and counting since its launch in 2018.

But what they saw in the light-curve of TIC 172900988 b gave astronomers pause. In addition to the expected dip from the tight orbiting primary pair, they caught a double dip about five days apart, as the 2.8x Jupiter mass world transited one star, and then another.

This is a surreptitious find, as TESS only had a 30 day window to observe this patch of sky. This also enabled astronomers to extrapolate the planet’s roughly 200 day orbit around the primary pair using the short observation arc, another first.

The two host primaries are solar mass, G-type yellow dwarfs like our Sun. The world would probably be a scorcher on the inner edge of the system’s habitable zone, but if, like Jupiter, TIC 172900988 happens to possess large moons, there’s always a chance that they’re partially sheltered inside the giant planet’s magnetic field.

The system is located 246 parsecs distant in the astronomical constellation Cancer the Crab, shining at about 10th magnitude. High-resolution imaging in the near infrared part of the spectrum also revealed a possible red dwarf companion in the system, on a wide-ranging 5,000 year orbit.

The last few decades of exoplanet discovery has revealed just how bizarre other solar systems can be. It’s amazing to think: back until the discovery of pulsar planet system PSR B1257+12 in 1990, no exoplanets were known of… and I remember astronomers in the 1980s making the argument that it might just stay that way, as exoplanet detection is just too difficult. Fast-forward to the end 2021, and we now know of 4,890 worlds in the catalog and counting.

And our fair world also transits from the point of view of any known exoplanet along the plane of the ecliptic as well. It’s been proposed that any worlds found along the ecliptic plane would be excellent targets for a SETI search, as they would probably know we’re here, too.

Add just one more interesting world to the catalog, in the ongoing golden era of exoplanet astronomy.

Our online buy steroids store specializes in delivering steroids across the US.