Our online buy steroids store specializes in delivering steroids across the US.
Observations Archives - Page 2 of 3 - Vaonis
Our online buy steroids store specializes in delivering steroids across the US.

Observations

Observations, Tips & News, Travel journal

Unlock the Secrets of the Universe with Vespera: a Review by Nebula Photos

Unlock the Secrets of the Universe with Vespera: A Review by Nebula Photos

We were thrilled to discover that Nebula Photos, a popular YouTube channel dedicated to outdoor photography and gear reviews, recently did a review video about Vespera. In this blog post, we’ll be highlighting three key points from his video that showcase Vespera‘s impressive capabilities, how to unlock the secrets of the Universe with it and why it’s a great investment for any astronomy enthusiast.

In this YouTube video titled “Can I beat a ROBOT at Astrophotography?”, astrophotographer Nico compares the Vaonis Vespera observation station to his own astrophotography kit made from spare parts.

Unlock the Secrets of the Universe with Vespera | 3 points from his review

Vespera Review | Automation and easy to use

One of the standout features of Vespera‘s telescope, according to Nebula Photos, is its capacity of automation. Additionally, the telescope is designed to be easy to set up and use, making it a great option for beginners or anyone looking for a hassle-free stargazing experience.

 

Vespera Review | Impressive image quality

Nebula Photos was particularly impressed by the image quality produced by Vespera‘s telescope. He notes that the telescope’s large aperture allows for clear and detailed views of celestial objects, even in low light conditions. He also highlights the telescope’s high-quality optics, which he says contribute to the overall sharpness and clarity of the images.

Unlock the Secrets of the Universe with Vespera: Review by Nebula Photos

Vespera Review | Versatile and customizable

Finally, Nebula Photos highlights the telescope’s versatility and customizable features. He notes that the telescope comes with a variety of filters that allow users to customize their viewing experience based on their specific needs and interests. 

Unlock the Secrets of the Universe with Vespera: Review by Nebula Photos

Conclusion

Nico discusses the pros and cons of both systems, including weight, packability, upgradeability, cost, flexibility, and results. He also compares the walking noise between the two setups, noting that adding a cheap guide scope and autoguiding camera can minimize or eliminate it. 

Overall, Nebula Photos‘ review of Vespera is overwhelmingly positive. He notes that the telescope is a great option for both beginners and experienced stargazers alike, and praises its portability, image quality, and versatility. If you’re in the market for a new telescope, be sure to check out Nebula Photos‘ review of Vespera‘s offering for a more in-depth analysis.

M81 M82 by Vespera
Observations, Tips & News, Travel journal

What can we observe in the sky in March 2023?

What can we observe in the sky in March 2023?

March 2023 may be a particularly interesting time for astronomers. This month, an array of phenomena can be observed and studied in the night sky. From historically significant astronomical events to constellations and objects visible with the naked eye, the skies of March will provide astronomers plenty of opportunities to explore and understand the universe and its many mysteries. In this blog post, we will discuss the many wonders that await astronomers in March 2023.

Galaxy: Messier 82

Located in the constellation Ursa Major, Messier 82 (M82) is a starburst galaxy that is approximately 12 million light-years away from Earth. This galaxy is notable for its bright, elongated shape, due to the presence of large amounts of gas and dust being pushed out of the galaxy by intense bursts of star formation.

M81 M82 by Vespera

M81 & M82 by Harry Laytos using Vespera

Nebula: The Orion Nebula

One of the most famous and beautiful nebulae in the night sky, the Orion Nebula (also known as Messier 42) is a vast cloud of gas and dust that is located in the constellation Orion. This nebula is one of the closest regions of active star formation to Earth, and it is home to many young, hot stars.

Enhance your experience of M42 using our CovalENS technology, which enables you to change the composition of your photos with bigger frames, as seen on this amazing image shot by Sébastien Aubry.

M42 (951 exp) with Vespera

Star Cluster: M11

M11, also known as the Wild Duck Cluster, is a stunning star cluster located in the constellation Scutum. It’s best observed during the months of summer, but it can be seen in March 2023 as it rises higher in the sky throughout the night. Using Vespera or Stellina, you’ll be able to see dozens of bright stars arranged in a loose, open cluster. The cluster is estimated to be around 220 million years old and located approximately 6,000 light-years away from Earth. It’s a popular target for amateur astronomers and is definitely worth checking out if you have a telescope and clear skies. 

 

Object visible from the Southern Hemisphere: The Carina Nebula

Located in the constellation Carina, the Carina Nebula is a massive cloud of gas and dust that is home to many young, hot stars. This nebula is one of the brightest and most active regions of star formation in the Milky Way, and it is a favorite target for astronomers and astrophotographers alike.

 

Comet C/2022 E3

Discovered on March 1st, 2022, by Richard Grauer, comet C/2022 E3 is a long-period comet that is currently making its way through the inner solar system. In March 2023, the comet will be visible in the constellation Auriga, and it is expected to reach peak brightness around the middle of the month.

To observe comet C/2022 E3 with your Vaonis instrument, make sure to check out our article to set your observation station on manual mode here.

E3 Comet by Phillip McGee

E3 Comet by Phillip McGee

Curious for more?

In addition to these specific objects, one of the most significant astronomical events of March 2023 will be the conjunction of Jupiter and Saturn. This rare event, often referred to as the “Great Conjunction”, occurs when the two largest planets in the solar system align in the night sky. Although conjunctions between Jupiter and Saturn happen approximately every 20 years, this particular event will be unique because it will be the closest alignment of the two planets since the Middle Ages. This rare alignment will be visible to the naked eye and will provide astronomers with an opportunity to study the solar system’s largest planets in a way that hasn’t been possible in centuries.

In conclusion, March 2023 offers plenty of exciting objects and events to observe in the night sky. From galaxies to nebulae, star clusters to comets, there is something for everyone to enjoy. With the right equipment and a little bit of patience, you can witness some of the most awe-inspiring sights the universe has to offer.

Observations, Tips & News, Travel journal

How to catch a comet with the Vaonis’ observation stations?

In the past two years, comets like Neowise, Atlas or the current C/2022 E3 ZTF have caught the attention of amateur astronomers. The Stellina and Vespera smart telescopes work well for imaging these objects, but it needs some preparation in the planning and some effort in processing the images to get the best result.

We have broken down this How to article in three steps to cover the basics of how to image a comet or an asteroid and create a good and correct image of it.

1. How to find the comet
2. How to set up the Manual Mode in Singularity App
3. How to process the images

1. How to find the comet

The first step is to know where in the sky the comet is located at the moment. Comets and asteroids are objects that change their position in the sky as they roam through our solar system. Stellar objects such as nebulae or galaxies are always at the same place on the star map, even if they are not always at the same place from our observing position on earth.

In order to enter the right spot to launch an observation into the Singularity App, we need the so-called J2000 coordinates of an object. An easy way to find them is to use online tools such as The Sky Live. The website provides an overview of comets (along with other objects) that are currently observable. Click on a comet to get details.

For us, the information of “Right Ascension” and “Declination” is important:
Right Ascension: 14h 45m 22.4s
Declination: 67° 25′ 05.9″ (J2000)

You will see that the values change slowly over time as the comet moves through the sky. So it is important to check the coordinates when you start your imaging session.

A second way to plan your nights is to use the free software Stellarium.


It is available as Desktop App for Windows, MacOS, and Linux as well as a mobile version for Android and iOS. The benefit for this app is
that you can set the focal length of your telescope (Vespera 200mm, Stellina: 400mm) and the sensor data to get a preview of the field of view of your telescope.

You then need to add the data of the comet to Stellarium as shown in the image. Once this is done you can search for the comet’s name to get it shown on the star map. On the left side of the screen, you will see a lot of information about the object, including the J2000 coordinates that we need.

2. How to set up the Manual Mode in Singularity App

The next step is to actually take images of the comet. As comets are not yet part of Singularity’s database, we need to use the manual mode.

Go to the Catalog tab at the bottom of the app and select Manual.

Enter the name of the object (e.g.: C/2022 E3).

As comets are quite bright compared to nebulae or galaxies, choose Cluster as the object type. Don’t select “Star” as this will use the live tracking mode like with sun observations and you don’t get a stacked image and also only JPEG exposures saved instead of the FITS files that we need later.

You can leave the default exposure time at 10 seconds or change it up to 15 seconds. Leave the Gain setting untouched (20 dB) and the Pointing Type as well (Auto).

Enter the coordinates found on Stellarium or The Sky Live website as shown in the picture and hit the Save button at the end. You can prepare this already before you connect to your Stellina and Vespera.

Before you start, you should also check that FIT files are enabled in the settings of Singularity’s app.

To start your session, initialize your telescope as usual and select the manual mode for the objects after the telescope is initialized. You can directly start the observation or choose the mosaic mode for a wider field of view. Especially if the comet has a bright and long tail, it might be worth taking the extra time for a mosaic, but it will create some additional effort in the processing steps.

Once the session is running you should see the comet appear right away in your images.

If you take only a few minutes of imaging you can use the exported TIFF file from the observation and tweak it a little with any photo editing software. If you let the session run for longer you will see that the comet gets more and more elongated and stretched in the picture. That happens because the Vespera or Stelina are tracking the sky in a way to keep the stars fixed in your image. But the comet moves slowly insight the image causing the elongation in the stacked image.

3. How to process the images

There are various ways of processing the image.

The most simple approach is to take only short observation times like 5 to 10 minutes. In this short time, the comet should not move too much so you can just keep your stacked TIFF file from the telescope and edit the image in any photo editing software like Photoshop, Affinity Photo, or GIMP.

A more advanced option for processing is to use a free tool like Deep Sky Stacker or Siril to create an additional stacked image of the single exposures of the imaging session. This is the reason why we need to enable the saving of FIT files for the telescope. Deep Sky Stacker is only available for Windows, but Siril works on Mac, Windows and Linux.

Both free tools have a comet registration mode, that helps to get a clear and correct image of the comet.

Deep Sky Stacker

Deep Sky Stacker

Deep Sky Stacker

Deep Sky Stacker

Deep Sky Stacker

Read tutorials on Siril and Deep Sky Stacker.

Once we have a stacked image of the comet, we can open both images as layers in a photo editing software.

The image with the stars should be the bottom layer and the image with the comet the top layer. Both images are edited (stretched, color adjusted, de-noised etc.) separately and then with a mask we can blend in the image of the comet over the image.

If you have access to professional tools like AstroPixelProcessor or PixInsight you can create better-stacked images with more options for tweaking details.

With the help of starnet++, a tool that is able to split an astro image into an image with only the stars and a second image with only the rest, we can create an image with the stars only and the comet only.

These images can then be combined using a PixelMath function that blends both images together.

The final result can also be edited in a photo editing software for final touches as shown above. The data for the final image was only 15 minutes of observation time in mosaic mode.

Comet final result. Author: Mario K.

Comet final result. Author: Mario K.

This how to is based on an article about the comet C/2022 E3 published in German for golem.de.

 

Observations, Tips & News, Travel journal

What can we observe in the sky in January 2023?

What can we observe in the sky in January 2023? In our solar system, several events will take place at the beginning of this new year.

First, on January 4, the Earth will pass at perihelion. In its elliptical trajectory around the Sun, this day will mark the minimum distance between our planet and its star.

The distance will be 147 098 925 km, which is about 5 million kilometers closer than the maximum distance between the two objects.

Que peut-on observer dans le ciel en Janvier 2023?

 

Also on January 4, the Quadrantid shower will reach its peak of activity : between 60 and 200 meteors per hour are expected to light up the night sky.

The radiant point, the place where the shooting stars seem to come from, is located in the constellation of the Cattleman in the direction of the Big Dipper. Its name comes from an ancient constellation, the Quadrans Muralis created in 1795 by the astronomer Jérôme Lalande. The name referred to a tool used by astronomers. The constellation was deleted in 1922 when the International Astronomer Union (IAU) formalized the names of the 88 constellations in our sky.

Discovered in spring 2022, the comet C/2022 E3 (ZTF) will animate this beginning of year. On January 12, it will pass at perihelion at about 1.1 times the distance from Earth to the Sun.

The name of the comet follows the official nomenclature for naming these objects. The “C” indicates that the comet is not periodic or that it takes more than 200 years to complete its orbit. “2022 E3” indicates that it is a comet discovered in 2022 in early March. “(ZTF)” is the reference to the research team that made the discovery, namely the Zwicky Transient Facility located at Mount Palomar in California.

After this date, the comet will be on its way to Earth: it should pass close to us on February 1st at only 0,28 astronomical unit, or about 100 times the distance to the Earth’s moon.

In the best case, the comet should be visible to the naked eye. Estimates of brightness should improve after its closest passage to the Sun.

Que peut-on observer dans le ciel en Janvier 2023?

Source

In the deep sky, several objects depending on your position can be observed in ideal conditions during this month of January.

There is for example M47, an open cluster in the constellation of the Puppis, which will pass at most in the sky on January 15. You will be able to use the mosaic mode to capture on the same image M47 as well as M46 another open cluster and the planetary nebula NGC 2438.

Also at its highest point in the sky on January 15, the spiral galaxy NGC 2403 in the constellation Giraffe will also be in ideal conditions to be photographed with your instrument.

the rosette nebula
Observations, Travel journal

What can we observe in the sky in December?

What can we observe in the sky in December? For this last month of the year, Mars will be in the sky several times, accompanied by beautiful showers of shooting stars!

The planet Mars will offer us several events in December

On December 1st, as it does every 780 days, the Red Planet will pass close to Earth. During this visit, Mars will be at 81 million kilometers from us this time around. As the trajectory of the planet is eccentric, it does not describe a circle but an ellipse, consequently the minimum distance between the two planets varies between 55 million and 120 million km.

The configuration of 2022 is therefore not the most optimal. It will be necessary to wait for the next transits in 2035 and 2050 for the planet to be as close as possible.

To witness the next record of proximity between the two planets, we will have to wait until August 28th, 2287. The distance will be only 55.758 million km, that is to say 70,000 km less than the previous record of 2003.

Credit : Yohann Gominet, Paris observatory – PSL / IMCCE

A few days later, on December 8th, the planet will be in opposition: the Sun-Earth-Mars system will be aligned.

On the same day, in some parts of the world, Mars will be playing hide-and-seek with the Full Moon. In Western Europe, Canada and a large part of the United States, the Red Planet will pass behind the last Full Moon of the year. During about 1 hour, between 2H17 UTC and 6H10 UTC, depending on your position, the planet will disappear behind our natural satellite.

occultation de la lune par mars

Finally, Mars will be visible simultaneously with the other planets of the solar system at the end of the twilight.

For Uranus and Neptune, you will need an instrument to observe them.

The others will be visible with the naked eye.

Solstice December 21 21h48 UTC

December 21st, at 21:48 UTC, will mark the December solstice.

For the Northern Hemisphere, it will be the longest night of the year and the beginning of winter for temperate regions. For the Southern Hemisphere, it will be the shortest night of the year and the beginning of summer in temperate areas.

Showers of shooting stars

Geminid meteor shower

Between December 4 and 17, the Earth will pass through the dust and small rocky particles left by the asteroid Phaeton. These fragments will burn up in the atmosphere and offer a shower of shooting stars. The peak of activity is expected on December 14 with rates up to 120 shooting stars per hour depending on your location.

Ursids meteor Shower

After the Geminid shower, the Ursids will take over between December 17 and 26. The Earth will then pass through the dust deposited by the comet Tuttle. The maximum activity is expected on December 22. The number of shooting stars will be a few dozen per hour.

Deep sky

December 13

For those in the Southern Hemisphere, the Large Magellanic Cloud will be high in the sky and in good observing conditions. The new Mosaic mode will allow you to observe different regions of this galaxy, such as the Tarantula Nebula and the open clusters surrounding it. You can also explore another part of the LMC by observing the open cluster NGC 1761 and its environment also rich in clusters and nebulosities.

December 30: The Rosette Nebula

For those in the Northern Hemisphere, the Rosette Nebula will be in good observing conditions in December. It will reach its peak on December 30. Take advantage of the Mosaic mode to get an observation of the whole area.

Ceres
Observations, Travel journal

What can we observe in the sky in November?

What can we observe in the sky in November? The end of the year will be rich in observations of the sky and this month of November is already starting with a total lunar eclipse, visible on the west coast of the United States, Australia and East Asia, in particular.

Ceres passes through the Leo triplet between November 6th & 7th

Between November 6th & 7th, the dwarf planet Ceres will pass through the Leo Triplet in the sky. This will obviously be a visual effect in our sky because the smallest dwarf planet in the solar system with a size of 950 km is only about 400 million kilometers away from us while the M65, M66 and Hamburger galaxies are 35 million light years away.

Ceres

Total lunar Eclipse on November 8th

After the partial eclipse of the Sun on October 25th, the Sun, the Earth and the Moon will play together again to offer us a new event in the sky. This time, the alignment of the 3 objects will be different because the Earth will be in the middle of the trio. The Moon will be totally in the shadow of the Earth and will not perceive the light of the Sun during this total lunar eclipse. The phenomenon will be visible everywhere where it will be dark on November 8 between 09:10 and 12:49 UTC, mainly the Americas, Asia and Oceania.

What can we observe in the sky in November?

Uranus in opposition on November 9th

The seventh planet of the solar system will be at opposition on November 9th. The ice giant planet will be located a few degrees from the full Moon. In eastern Asia and Alaska, the opposition of the planet will be accompanied by an occultation by the Moon the day before.

What can we observe in the sky in November?

Leonid on November 18th

During the month of November, the Earth passes through the residues left by the comet Tempel-Tuttle. About 10 tons of debris weighing less than a gram for sizes smaller than10mm come to burn in our atmosphere.

On the night of November 18, this Leonids shooting star shower will reach its maximum activity. In the direction of the constellation Leo, about 15 meteors per hour should be visible.

Trivia : The comet officially referenced as 55P/Tempel-Tuttle, was discovered independently by astronomers Ernest Tempel on December 19, 1865 and Horace Parnell Tuttle on January 6, 1866. It has a period of 33 years. Its latest passage to the Sun was on February 28, 1998 and its next one is scheduled for May 20, 2031, according to its current trajectory.

M45, the Pleiades well placed in the sky

During the night of November 18, the 7 sisters of the Pleiades and their parents Atlas and Pleioné will reach their highest point in the night sky. The open cluster will be in optimal conditions to be observed. In the sky, following the imaginary line formed by the stars Sirius, Orion’s belt and Aldebaran, you will discover a small group of 5 bright stars. After some time of adaptation, your eye should distinguish a little more and in excellent conditions of observation and with a good view, you should distinguish 12 of them. Using your instrument and the beta version of Singularity’s Mosaic mode, you should be able to detect a few dozen stars among the thousand objects contained in the open cluster.

What can we observe in the sky in November?

photo by Hervé Descoubes

the first "panorama mode" ever embedded in a telescope
Observations, Travel journal

CovalENS, the first “panorama mode” ever embedded in a telescope

the first "panorama mode" ever embedded in a telescope
Discover CovalENS, the first “panorama mode” ever built into a telescope, allowing you to explore a much larger area of the sky than the original field of view of your instrument, and create your own panorama of the Universe. Vespera and Stellina now offer an innovative observing mode that allows you to automatically obtain views of the sky that are much wider than normally allowed by the characteristics of the instrument. With the same observing station, you now have a wider window on the Universe and more opportunities to capture unique images.

1 – What are the new possibilities offered by the capture of mosaics ?

Stellina and Vespera have a fixed field of view which is determined by the focal length of each instrument and the size of their sensors.

For Stellina, this field of view is 1° x 0.7° and for Vespera 1.6° x 0.9°.

Many deep sky objects as well as the Moon and the Sun (observable with the optional sun filter are smaller in size and then can be observed and photographed in their entirety. But there are also some objects or groups of objects that are larger in size and therefore can’t be seen in their entirety in the captured images. For example, the Great Andromeda Galaxy is about 3° at its longest dimension (6 times the full Moon!).

The mosaic mode extends the field of view of Stellina and Vespera, allowing you to see larger objects and regions of the universe. It is like having a second observation station for the large field.

The Andromeda galaxy captured with Vespera in mosaic mode (unprocessed image, integration time: 2 hours). The image represents a FOV of 2.8° x 2.1°. The white rectangle represents the native field of Vespera and the blue rectangle the native field of Stellina.

With the mosaic capture, you can now :

  • obtain more complete images of large deep sky objects such as the Andromeda Galaxy, the Rosette Nebula (Monoceros constellation), the Carina Nebula, the Heart Nebula (Cassiopeia constellation), the Small Magellanic Cloud, large star clusters such as the Pleiades…
  • better explore the environment of large nebulas, such as the Great Orion Nebula or the Horsehead Nebula, the region of the Tarantula Nebula or the nebula-rich regions of the Milky Way’s center
  • obtain, in the same view, sets of nebulas such as the Lagoon Nebula and the Trifid Nebula (Sagittarius constellation) but also views gathering several star clusters such as M46 and M47 (Puppis constellation)
  • capture small asterisms or groups of stars with a particular aesthetic, such as Kemble’s Cascade (Camelopardalis constellation)
  • it was already possible to visualise, in the same field, groups of galaxies such as M81 and M82, but now larger groups are available: the Leo cluster of galaxies or the Markarian Chain, Coma Cluster

Mosaic dimensions and specificities according to the observation station

The user can choose the dimensions and proportions of the mosaic in the Singularity interface (see part 3). The maximum field of view at the sensor proportions is 3.2° x 1.8° and for Stellina 2° x 1.4°.

Vespera users benefit from the possibility of capturing images with a higher resolution than the sensor resolution, up to 8.2 megapixels, thanks to the mosaic mode.

The maximum resolution of a mosaic made with Stellina is 6.4 megapixels.

The framing of a mosaic is defined in relation to the north/south orientation of the sky (equatorial orientation), so that Vespera users are not dependent on the orientation of celestial objects in the field of view, which varies according to the time of observation.

The innovative process developped by Vaonis to capture these wide field images (see part 2) allows you to benefit from a “dithering” effect (the same portion of the sky is captured successively by different areas of the sensor) which attenuates the impact of the inherent defects of the sensor (noise, hot pixels) and allows to obtain a final rendering of better quality.

Summary of mosaic characteristics

Stellina Vespera
native field of view of the telescope 1° x 0,7° 1,6° x 0,9°
extended field max. size (sensor ratio) 2° x 1,4° 3,2° x 1,8°
extended field max. size (square) 1,7° x 1,7° 2,4° x 2,4°
extended field max. size (horizontal) 2,8° x 1 3,6° x 1,6°
extended field max. size (vertical) 0,7° x 4° 0,9° x 6,4°
extended field max. definition 6,4 Mpx 8,2 Mpx

2 – How does mosaic capture work?

Vaonis has developed an innovative method of image capture that allows users to obtain an image of the extended field in an optimum time, while simultaneously proceeding to the stacking of images, essential in astrophotography to obtain a satisfactory quality rendering.

The process of making a mosaic is completely automatic.

After launching the observation in mosaic mode, your observation station progressively scans the field that you have defined in the Singularity application by shifting the pointing of the telescope in small steps. Simultaneously, images are captured to compose the mosaic. As the images are captured, the large overlapping portions of the images are used to stack these areas.

The video below shows a time-lapse of the process, visible in the Singularity application.

An observation time of approximately 60 minutes (integration time displayed in your Singularity application) is required for your observation station to scan the entire extended field and provide a high-quality image of the mosaic.

If you decide to continue observing once the mosaic is complete, the extra time will be used to perform additional scans of the field and thus gradually improve the overall quality of the final image.

After 120 minutes of observation (the integration time displayed in your Singularity application), you will have an image of the entire field of significantly better quality, allowing you to manually process the image to bring out the finer details, for example.

M31 Andromeda Galaxy premier "mode panorama" jamais intégré à un télescope

Caption: The Andromeda Galaxy M31, captured by Vespera with an integration time of 2 hours and processed with Affinity Photo and Starnet applications ++ (image : Sébastien Aubry – @adventurerofthethirplanet )

 

Rosette Nebula premier "mode panorama" jamais intégré à un télescope

The Rosette Nebula, captured by Vespera with an integration time of 2.5 hours and processed with the Affinity Photo and Starnet ++ applications. The frames superimposed on the image represent the native fields of Stellina (in blue) and Vespera (in white). (image : Sébastien Aubry – @adventurerofthethirplanet )

3 – How to use the panorama mode with your observation station

Singularity provides a simple and intuitive interface that allows you to select the region of the sky for a mosaic, taking into account the size and shape of the celestial objects you want to include.

As with all observations with Vespera and Stellina, the starting point for obtaining an extended field view is to search for your target in the Singularity app explorer page. In the beta mode, the mosaic mode works with manuel targets but is not compatible with the “Plan my Night” feature.

If your target is not listed in Singularity’s catalog, you can choose another nearby object available in the catalog and navigate to your target or define a manual target.

Once your target has been identified, Singularity will offer you the options of starting a classic observation or starting a mosaic.

If you choose the latter option, Singularity will show you a map of the sky centered on your target and representing the surrounding area.

The map displays all the deep sky objects, indicating their overall shape for large nebulas and their size and their orientation for galaxies and star clusters. The brightest stars are also displayed.

A white rectangle is superimposed on the map and delimits the field that will be captured by your observing station when you start the mosaic.

Pull the handles in the corners of this rectangle to change the size and proportions of the area. The top banner on the screen shows the dimensions of the field in degrees.

Drag the map to frame the targets you wish to include in the field.

Singularity interface

Singularity’s interface for defining the size and framing of your mosaic: (1) Pull the handles of the frame to change its size and proportions. (2) Move the map to refine your composition.

When you are happy with your framing, launch the observation and your telescope will begin capturing the mosaic and show you its progress in real time as it acquires the individual images.

It takes about 60 minutes for the observing station to complete a mosaic. However, you can stop the process at any time if you are satisfied with the current image. You can then save it or export it as is.

Please note, however, that it is not possible to resume a mosaic that you have interrupted. You will have to start the acquisition from the beginning. Similarly, if during the course of a mosaic you ask to refocus, the capture will be interrupted and will be restarted (automatically) from the beginning.

framing sample

Examples of defining the mosaic framework in Singularity for different regions of the sky: (1) Lagoon Nebula and Trifid (2) Markarian Chain

Saving and exporting mosaic images

You can save and export an image of the mosaic at any time, as you normally would with a conventional observation. The result of the mosaic can be obtained in JPEG format or in raw TIFF format if you wish to perform manual image processing.

If you have activated the saving of the files on a USB stick on Stellina or in the internal memory of Vespera, you will find all the JPEGs of each step of the mosaic as well as the raw file in TIFF format of the last state before the interruption of the observation. You can also save all the raw unit images in FITS format that were used to stack and to compose the mosaic. Please note, however, that in order to use the raw FITS images, you will have to manually perform the mosaic assembly and stacking with a specialized application.

The raw image file in TIFF format represents the assembled mosaic (with the stacking done by the observation station) and can be directly exploited in any image processing software.

Orion Nebula M42 | premier "mode panorama" jamais intégré à un télescope

The region of the Great Orion Nebula, captured by Vespera with an integration time of 2h30 and processed with Affinity Photo and Starnet applications ++ (image : Sébastien Aubry – @adventurerofthethirplanet )

Observations, Press, Tips & News, Travel journal

Top Astronomy Events for May 2022

May sees a fine gathering of dawn planets, a trio of possible meteor outbursts and a spectacular total lunar eclipse.

M3

Messier 3, one of the fine globular clusters of May. Credit: Stellina/Dave Dickinson

After a long dry spell, the astronomical action returns to the night sky in the month of May. Eclipse season is also underway in May, bookended by a spectacular total lunar eclipse on May 16th. Meanwhile, planets string the dawn sky, along with the chance for several rare meteor outbursts… looking farther afield, the May sky means one thing for deep sky observers: the promise of galaxies.Read more

Observations, Press, Tips & News, Travel journal

Top Events for April Astronomy 2022

April astronomy sees the bright stars of winter set at dusk, with the promise of galaxies rising in the east.

The month of April sees the first full month of Spring in the northern hemisphere, and Fall in the southern. Though nights are getting ever shorter up north, the length of daytime versus night is still fairly equal across both hemispheres.

Also, keep an eye out for aurora from mid- to high latitudes in April as we come off of equinox season; the Sun just kicked off as Earthward X1 class flare yesterday, and Solar Cycle #25 is now in full swing.Read more

Nébuleuse de la méduse
Observations, Travel journal

Lets meet IC 443 Jellyfish Nebula

1h12 AM

Today we embarked on a journey twenty thousand leagues under the sea aboard the Stellina station. We never imagined meeting a huge celestial jellyfish on our way. Bewitched by the movements of her radiant and transparent body, we spent 5 hours watching her swimming majestically in this sea of stars called Gemini.

What marine animal are we going to meet again?

IC 443 Jellyfish Nebula

Object: IC 443 Jellyfish Nebula
Date: 08/02/2021
Total exposure time: 5 hours
Location: United-States
Auhor: Brian P.

Check more of our observations on our blog.

Our online buy steroids store specializes in delivering steroids across the US.